Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-training Graph Neural Network for Cross Domain Recommendation (2111.08268v1)

Published 16 Nov 2021 in cs.IR and cs.LG

Abstract: A recommender system predicts users' potential interests in items, where the core is to learn user/item embeddings. Nevertheless, it suffers from the data-sparsity issue, which the cross-domain recommendation can alleviate. However, most prior works either jointly learn the source domain and target domain models, or require side-features. However, jointly training and side features would affect the prediction on the target domain as the learned embedding is dominated by the source domain containing bias information. Inspired by the contemporary arts in pre-training from graph representation learning, we propose a pre-training and fine-tuning diagram for cross-domain recommendation. We devise a novel Pre-training Graph Neural Network for Cross-Domain Recommendation (PCRec), which adopts the contrastive self-supervised pre-training of a graph encoder. Then, we transfer the pre-trained graph encoder to initialize the node embeddings on the target domain, which benefits the fine-tuning of the single domain recommender system on the target domain. The experimental results demonstrate the superiority of PCRec. Detailed analyses verify the superiority of PCRec in transferring information while avoiding biases from source domains.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chen Wang (600 papers)
  2. Yueqing Liang (14 papers)
  3. Zhiwei Liu (114 papers)
  4. Tao Zhang (481 papers)
  5. Philip S. Yu (592 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.