Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ModelLight: Model-Based Meta-Reinforcement Learning for Traffic Signal Control (2111.08067v2)

Published 15 Nov 2021 in cs.LG and eess.SP

Abstract: Traffic signal control is of critical importance for the effective use of transportation infrastructures. The rapid increase of vehicle traffic and changes in traffic patterns make traffic signal control more and more challenging. Reinforcement Learning (RL)-based algorithms have demonstrated their potential in dealing with traffic signal control. However, most existing solutions require a large amount of training data, which is unacceptable for many real-world scenarios. This paper proposes a novel model-based meta-reinforcement learning framework (ModelLight) for traffic signal control. Within ModelLight, an ensemble of models for road intersections and the optimization-based meta-learning method are used to improve the data efficiency of an RL-based traffic light control method. Experiments on real-world datasets demonstrate that ModelLight can outperform state-of-the-art traffic light control algorithms while substantially reducing the number of required interactions with the real-world environment.

Citations (14)

Summary

We haven't generated a summary for this paper yet.