Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Query and Depth Upper Bounds for Quantum Unitaries via Grover Search (2111.07992v4)

Published 15 Nov 2021 in quant-ph and cs.CC

Abstract: We prove that any $n$-qubit unitary transformation can be implemented (i) approximately in time $\tilde O\big(2{n/2}\big)$ with query access to an appropriate classical oracle, and also (ii) exactly by a circuit of depth $\tilde O\big(2{n/2}\big)$ with one- and two-qubit gates and $2{O(n)}$ ancillae. The proofs involve similar reductions to Grover search. The proof of (ii) also involves a linear-depth construction of arbitrary quantum states using one- and two-qubit gates (in fact, this can be improved to constant depth with the addition of fanout and generalized Toffoli gates) which may be of independent interest. We also prove a matching $\Omega\big(2{n/2}\big)$ lower bound for (i) and (ii) for a certain class of implementations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. Scott Aaronson “Open problems related to quantum query complexity” Sec. 6, 2021 URL: https://www.scottaaronson.com/papers/open.pdf
  2. Scott Aaronson “The complexity of quantum states and transformations: from quantum money to black holes”, 2016 arXiv:1607.05256
  3. “Quantum versus classical proofs and advice” In Theory Comput. 3.7, 2007, pp. 129–157 DOI: 10.4086/toc.2007.v003a007
  4. Andris Ambainis “Quantum lower bounds by quantum arguments” In J. Comput. System Sci. 64.4, 2002, pp. 750–767 DOI: 10.1006/jcss.2002.1826
  5. “Quantum amplitude amplification and estimation” In Quantum computation and information 305, Contemp. Math. Amer. Math. Soc., 2002, pp. 53–74 DOI: 10.1090/conm/305/05215
  6. Christopher M. Dawson and Michael A. Nielsen “The Solovay–Kitaev algorithm” In Quantum Inf. Comput. 6.1, 2006, pp. 81–95 arXiv:quant-ph/0505030
  7. Vittorio Giovannetti, Seth Lloyd and Lorenzo Maccone “Quantum random access memory” In Phys. Rev. Lett. 100.16, 2008, pp. 160501 DOI: 10.1103/PhysRevLett.100.160501
  8. Gene H Golub and Charles F Van Loan “Matrix computations” JHU press, 2013
  9. “Counting, fanout, and the complexity of quantum ACC” In Quantum Inf. Comput. 2.1, 2002, pp. 35–65 arXiv:quant-ph/0106017
  10. Johan Håstad “Almost optimal lower bounds for small depth circuits” In STOC, 1986, pp. 6–20 DOI: 10.1145/12130.12132
  11. “Quantum fan-out is powerful” In Theory Comput. 1.5, 2005, pp. 81–103 DOI: 10.4086/toc.2005.v001a005
  12. “Quantum Computing and Communications: an engineering approach” John Wiley & Sons, 2005 DOI: 10.1002/9780470869048
  13. “Quantum search-to-decision reductions and the state synthesis problem” In CCC 234, 2022, pp. 5:1–5:19 DOI: 10.4230/lipics.ccc.2022.5
  14. Stasys Jukna “Boolean function complexity” Advances and frontiers 27, Algorithms and Combinatorics Springer, Heidelberg, 2012 DOI: 10.1007/978-3-642-24508-4
  15. Oleg Lupanov “On a method of circuit synthesis” In Izvestia VUZ 1, 1958, pp. 120–140 DOI: 10.2307/2271493
  16. Ashwin Nayak “Inverting a permutation is as hard as unordered search” In Theory Comput. 7, 2011, pp. 19–25 DOI: 10.4086/toc.2011.v007a002
  17. Michael A. Nielsen and Isaac L. Chuang “Quantum Computation and Quantum Information: 10th Anniversary Edition” Cambridge University Press, 2010 DOI: 10.1017/CBO9780511976667
  18. Gregory Rosenthal “Efficient Quantum State Synthesis with One Query”, 2023 arXiv:2306.01723
  19. Claude Shannon “The synthesis of two-terminal switching circuits” In Bell System Tech. J. 28, 1949, pp. 59–98 DOI: 10.1002/j.1538-7305.1949.tb03624.x
  20. “Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis” In IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. IEEE, 2023 DOI: 10.1109/TCAD.2023.3244885
  21. “Collapse of the hierarchy of constant-depth exact quantum circuits” In Comput. Complexity 25.4, 2016, pp. 849–881 DOI: 10.1007/s00037-016-0140-0
  22. Nathan Wiebe Personal communication, 2021
  23. “Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits” In Quantum 7, 2023, pp. 956 DOI: 10.22331/q-2023-03-20-956
  24. Xiao-Ming Zhang, Tongyang Li and Xiao Yuan “Quantum state preparation with optimal circuit depth: Implementations and applications” In Physical Review Letters 129.23, 2022, pp. 230504 DOI: 10.1103/PhysRevLett.129.230504
Citations (28)

Summary

We haven't generated a summary for this paper yet.