Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near Optimal VNF Placement in Edge-Enabled 6G Networks (2111.07849v1)

Published 15 Nov 2021 in cs.NI

Abstract: Softwarization and virtualization are key concepts for emerging industries that require ultra-low latency. This is only possible if computing resources, traditionally centralized at the core of communication networks, are moved closer to the user, to the network edge. However, the realization of Edge Computing (EC) in the sixth generation (6G) of mobile networks requires efficient resource allocation mechanisms for the placement of the Virtual Network Functions (VNFs). Machine learning (ML) methods, and more specifically, Reinforcement Learning (RL), are a promising approach to solve this problem. The main contributions of this work are twofold: first, we obtain the theoretical performance bound for VNF placement in EC-enabled6G networks by formulating the problem mathematically as a finite Markov Decision Process (MDP) and solving it using a dynamic programming method called Policy Iteration (PI). Second, we develop a practical solution to the problem using RL, where the problem is treated with Q-Learning that considers both computational and communication resources when placing VNFs in the network. The simulation results under different settings of the system parameters show that the performance of the Q-Learning approach is close to the optimal PI algorithm (without having its restrictive assumptions on service statistics). This is particularly interesting when the EC resources are scarce and efficient management of these resources is required.

Citations (10)

Summary

We haven't generated a summary for this paper yet.