Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast adjoint differentiation of chaos via computing unstable perturbations of transfer operators (2111.07692v3)

Published 15 Nov 2021 in math.DS, cs.NA, math.NA, and physics.comp-ph

Abstract: We devise the fast adjoint response algorithm for the gradient of physical measures (long-time-average statistics) of discrete-time hyperbolic chaos with respect to many system parameters. Its cost is independent of the number of parameters. The algorithm transforms our new theoretical tools, the adjoint shadowing lemma and the equivariant divergence formula, into the form of progressively computing $u$ many bounded vectors on one orbit. Here $u$ is the unstable dimension. We demonstrate our algorithm on an example difficult for previous methods, a system with random noise, and a system of a discontinuous map. We also give a short formal proof of the equivariant divergence formula. Compared to the better-known finite-element method, our algorithm is not cursed by dimensionality of the phase space (typical real-life systems have very high dimensions), since it samples by one orbit. Compared to the ensemble/stochastic method, our algorithm is not cursed by the butterfly effect, since the recursive relations in our algorithm is bounded.

Citations (2)

Summary

We haven't generated a summary for this paper yet.