Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HAD-Net: Hybrid Attention-based Diffusion Network for Glucose Level Forecast (2111.07455v1)

Published 14 Nov 2021 in cs.LG and stat.ML

Abstract: Data-driven models for glucose level forecast often do not provide meaningful insights despite accurate predictions. Yet, context understanding in medicine is crucial, in particular for diabetes management. In this paper, we introduce HAD-Net: a hybrid model that distills knowledge into a deep neural network from physiological models. It models glucose, insulin and carbohydrates diffusion through a biologically inspired deep learning architecture tailored with a recurrent attention network constrained by ODE expert models. We apply HAD-Net for glucose level forecast of patients with type-2 diabetes. It achieves competitive performances while providing plausible measurements of insulin and carbohydrates diffusion over time.

Summary

We haven't generated a summary for this paper yet.