Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Max-min Fair Allocation (2111.07235v1)

Published 14 Nov 2021 in cs.GT and cs.DS

Abstract: We study an online version of the max-min fair allocation problem for indivisible items. In this problem, items arrive one by one, and each item must be allocated irrevocably on arrival to one of $n$ agents, who have additive valuations for the items. Our goal is to make the least happy agent as happy as possible. In research on the topic of online allocation, this is a fundamental and natural problem. Our main result is to reveal the asymptotic competitive ratios of the problem for both the adversarial and i.i.d. input models. We design a polynomial-time deterministic algorithm that is asymptotically $1/n$-competitive for the adversarial model, and we show that this guarantee is optimal. To this end, we present a randomized algorithm with the same competitive ratio first and then derandomize it. A natural derandomization fails to achieve the competitive ratio of $1/n$. We instead build the algorithm by introducing a novel technique. When the items are drawn from an unknown identical and independent distribution, we construct a simple polynomial-time deterministic algorithm that outputs a nearly optimal allocation. We analyze the strict competitive ratio and show almost tight bounds for the solution. We further mention some implications of our results on variants of the problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yasushi Kawase (35 papers)
  2. Hanna Sumita (19 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.