Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cardinality constrained submodular maximization for random streams (2111.07217v1)

Published 14 Nov 2021 in cs.DS

Abstract: We consider the problem of maximizing submodular functions in single-pass streaming and secretaries-with-shortlists models, both with random arrival order. For cardinality constrained monotone functions, Agrawal, Shadravan, and Stein gave a single-pass $(1-1/e-\varepsilon)$-approximation algorithm using only linear memory, but their exponential dependence on $\varepsilon$ makes it impractical even for $\varepsilon=0.1$. We simplify both the algorithm and the analysis, obtaining an exponential improvement in the $\varepsilon$-dependence (in particular, $O(k/\varepsilon)$ memory). Extending these techniques, we also give a simple $(1/e-\varepsilon)$-approximation for non-monotone functions in $O(k/\varepsilon)$ memory. For the monotone case, we also give a corresponding unconditional hardness barrier of $1-1/e+\varepsilon$ for single-pass algorithms in randomly ordered streams, even assuming unlimited computation. Finally, we show that the algorithms are simple to implement and work well on real world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Paul Liu (22 papers)
  2. Aviad Rubinstein (71 papers)
  3. Jan Vondrak (46 papers)
  4. Junyao Zhao (12 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.