Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing (2111.07049v1)

Published 13 Nov 2021 in cs.DS, cs.DM, math.CO, and math.PR

Abstract: A well-known result of Banaszczyk in discrepancy theory concerns the prefix discrepancy problem (also known as the signed series problem): given a sequence of $T$ unit vectors in $\mathbb{R}d$, find $\pm$ signs for each of them such that the signed sum vector along any prefix has a small $\ell_\infty$-norm? This problem is central to proving upper bounds for the Steinitz problem, and the popular Koml\'os problem is a special case where one is only concerned with the final signed sum vector instead of all prefixes. Banaszczyk gave an $O(\sqrt{\log d+ \log T})$ bound for the prefix discrepancy problem. We investigate the tightness of Banaszczyk's bound and consider natural generalizations of prefix discrepancy: We first consider a smoothed analysis setting, where a small amount of additive noise perturbs the input vectors. We show an exponential improvement in $T$ compared to Banaszczyk's bound. Using a primal-dual approach and a careful chaining argument, we show that one can achieve a bound of $O(\sqrt{\log d+ \log!\log T})$ with high probability in the smoothed setting. Moreover, this smoothed analysis bound is the best possible without further improvement on Banaszczyk's bound in the worst case. We also introduce a generalization of the prefix discrepancy problem where the discrepancy constraints correspond to paths on a DAG on $T$ vertices. We show that an analog of Banaszczyk's $O(\sqrt{\log d+ \log T})$ bound continues to hold in this setting for adversarially given unit vectors and that the $\sqrt{\log T}$ factor is unavoidable for DAGs. We also show that the dependence on $T$ cannot be improved significantly in the smoothed case for DAGs. We conclude by exploring a more general notion of vector balancing, which we call combinatorial vector balancing. We obtain near-optimal bounds in this setting, up to poly-logarithmic factors.

Citations (7)

Summary

We haven't generated a summary for this paper yet.