Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real topological Hochschild homology via the norm and Real Witt vectors (2111.06970v1)

Published 12 Nov 2021 in math.AT

Abstract: We prove that Real topological Hochschild homology can be characterized as the norm from the cyclic group of order $2$ to the orthogonal group $O(2)$. From this perspective, we then prove a multiplicative double coset formula for the restriction of this norm to dihedral groups of order $2m$. This informs our new definition of Real Hochschild homology of rings with anti-involution, which we show is the algebraic analogue of Real topological Hochschild homology. Using extra structure on Real Hochschild homology, we define a new theory of $p$-typical Witt vectors of rings with anti-involution. We end with an explicit computation of the degree zero $D_{2m}$-Mackey functor homotopy groups of $\operatorname{THR}(\underline{\mathbb{Z}})$ for $m$ odd. This uses a Tambara reciprocity formula for sums for general finite groups, which may be of independent interest.

Summary

We haven't generated a summary for this paper yet.