Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hierarchical clustering by aggregating representatives in sub-minimum-spanning-trees

Published 11 Nov 2021 in stat.ML, cs.AI, and cs.LG | (2111.06968v1)

Abstract: One of the main challenges for hierarchical clustering is how to appropriately identify the representative points in the lower level of the cluster tree, which are going to be utilized as the roots in the higher level of the cluster tree for further aggregation. However, conventional hierarchical clustering approaches have adopted some simple tricks to select the "representative" points which might not be as representative as enough. Thus, the constructed cluster tree is less attractive in terms of its poor robustness and weak reliability. Aiming at this issue, we propose a novel hierarchical clustering algorithm, in which, while building the clustering dendrogram, we can effectively detect the representative point based on scoring the reciprocal nearest data points in each sub-minimum-spanning-tree. Extensive experiments on UCI datasets show that the proposed algorithm is more accurate than other benchmarks. Meanwhile, under our analysis, the proposed algorithm has O(nlogn) time-complexity and O(logn) space-complexity, indicating that it has the scalability in handling massive data with less time and storage consumptions.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.