Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guided Sampling-based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis (2111.06885v3)

Published 12 Nov 2021 in cs.NE, cs.SY, and eess.SY

Abstract: The diagnostic performance of most of the deep learning models is greatly affected by the selection of model architecture and hyperparameters. Manual selection of model architecture is not feasible as training and evaluating the different architectures of deep learning models is a time-consuming process. Therefore, we have proposed a novel framework of evolutionary deep neural network which uses policy gradient to guide the evolution of DNN architecture towards maximum diagnostic accuracy. We have formulated a policy gradient-based controller which generates an action to sample the new model architecture at every generation such that the optimality is obtained quickly. The fitness of the best model obtained is used as a reward to update the policy parameters. Also, the best model obtained is transferred to the next generation for quick model evaluation in the NSGA-II evolutionary framework. Thus, the algorithm gets the benefits of fast non-dominated sorting as well as quick model evaluation. The effectiveness of the proposed framework has been validated on three datasets: the Air Compressor dataset, Case Western Reserve University dataset, and Paderborn university dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.