Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AC-VC: Non-parallel Low Latency Phonetic Posteriorgrams Based Voice Conversion (2111.06601v1)

Published 12 Nov 2021 in eess.AS and cs.SD

Abstract: This paper presents AC-VC (Almost Causal Voice Conversion), a phonetic posteriorgrams based voice conversion system that can perform any-to-many voice conversion while having only 57.5 ms future look-ahead. The complete system is composed of three neural networks trained separately with non-parallel data. While most of the current voice conversion systems focus primarily on quality irrespective of algorithmic latency, this work elaborates on designing a method using a minimal amount of future context thus allowing a future real-time implementation. According to a subjective listening test organized in this work, the proposed AC-VC system achieves parity with the non-causal ASR-TTS baseline of the Voice Conversion Challenge 2020 in naturalness with a MOS of 3.5. In contrast, the results indicate that missing future context impacts speaker similarity. Obtained similarity percentage of 65% is lower than the similarity of current best voice conversion systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Damien Ronssin (3 papers)
  2. Milos Cernak (32 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.