Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The expectation-maximization algorithm for autoregressive models with normal inverse Gaussian innovations (2111.06565v1)

Published 12 Nov 2021 in stat.ME, math.ST, and stat.TH

Abstract: The autoregressive (AR) models are used to represent the time-varying random process in which output depends linearly on previous terms and a stochastic term (the innovation). In the classical version, the AR models are based on normal distribution. However, this distribution does not allow describing data with outliers and asymmetric behavior. In this paper, we study the AR models with normal inverse Gaussian (NIG) innovations. The NIG distribution belongs to the class of semi heavy-tailed distributions with wide range of shapes and thus allows for describing real-life data with possible jumps. The expectation-maximization (EM) algorithm is used to estimate the parameters of the considered model. The efficacy of the estimation procedure is shown on the simulated data. A comparative study is presented, where the classical estimation algorithms are also incorporated, namely, Yule-Walker and conditional least squares methods along with EM method for model parameters estimation. The applications of the introduced model are demonstrated on the real-life financial data.

Summary

We haven't generated a summary for this paper yet.