Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Avoiding a pair of patterns in multisets and compositions (2111.06185v1)

Published 11 Nov 2021 in math.CO and cs.DM

Abstract: In this paper, we study the Wilf-type equivalence relations among multiset permutations. We identify all multiset equivalences among pairs of patterns consisting of a pattern of length three and another pattern of length at most four. To establish our results, we make use of a variety of techniques, including Ferrers-equivalence arguments, sorting by minimal/maximal letters, analysis of active sites and direct bijections. In several cases, our arguments may be extended to prove multiset equivalences for infinite families of pattern pairs. Our results apply equally well to the Wilf-type classification of compositions, and as a consequence, we obtain a complete description of the Wilf-equivalence classes for pairs of patterns of type (3,3) and (3,4) on compositions, with the possible exception of two classes of type (3,4).

Summary

We haven't generated a summary for this paper yet.