Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PDMP Monte Carlo methods for piecewise-smooth densities (2111.05859v1)

Published 10 Nov 2021 in math.ST, math.PR, stat.CO, stat.ME, and stat.TH

Abstract: There has been substantial interest in developing Markov chain Monte Carlo algorithms based on piecewise-deterministic Markov processes. However existing algorithms can only be used if the target distribution of interest is differentiable everywhere. The key to adapting these algorithms so that they can sample from to densities with discontinuities is defining appropriate dynamics for the process when it hits a discontinuity. We present a simple condition for the transition of the process at a discontinuity which can be used to extend any existing sampler for smooth densities, and give specific choices for this transition which work with popular algorithms such as the Bouncy Particle Sampler, the Coordinate Sampler and the Zig-Zag Process. Our theoretical results extend and make rigorous arguments that have been presented previously, for instance constructing samplers for continuous densities restricted to a bounded domain, and we present a version of the Zig-Zag Process that can work in such a scenario. Our novel approach to deriving the invariant distribution of a piecewise-deterministic Markov process with boundaries may be of independent interest.

Summary

We haven't generated a summary for this paper yet.