Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SwAMP: Swapped Assignment of Multi-Modal Pairs for Cross-Modal Retrieval (2111.05814v2)

Published 10 Nov 2021 in cs.LG and cs.CV

Abstract: We tackle the cross-modal retrieval problem, where learning is only supervised by relevant multi-modal pairs in the data. Although the contrastive learning is the most popular approach for this task, it makes potentially wrong assumption that the instances in different pairs are automatically irrelevant. To address the issue, we propose a novel loss function that is based on self-labeling of the unknown semantic classes. Specifically, we aim to predict class labels of the data instances in each modality, and assign those labels to the corresponding instances in the other modality (i.e., swapping the pseudo labels). With these swapped labels, we learn the data embedding for each modality using the supervised cross-entropy loss. This way, cross-modal instances from different pairs that are semantically related can be aligned to each other by the class predictor. We tested our approach on several real-world cross-modal retrieval problems, including text-based video retrieval, sketch-based image retrieval, and image-text retrieval. For all these tasks our method achieves significant performance improvement over the contrastive learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Minyoung Kim (34 papers)
Citations (2)