Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Cut-and-Play Algorithm: Computing Nash Equilibria via Outer Approximations (2111.05726v4)

Published 10 Nov 2021 in math.OC and cs.GT

Abstract: We introduce Cut-and-Play, a practically-efficient algorithm for computing Nash equilibria in simultaneous non-cooperative games where players decide via nonconvex and possibly unbounded optimization problems with separable payoff functions. Our algorithm exploits an intrinsic relationship between the equilibria of the original nonconvex game and the ones of a convexified counterpart. In practice, Cut-and-Play formulates a series of convex approximations of the game and iteratively refines them with cutting planes and branching operations. Our algorithm does not require convexity or continuity of the player's optimization problems and can be integrated with existing optimization software. We test Cut-and-Play on two families of challenging nonconvex games involving discrete decisions and bilevel problems, and we empirically demonstrate that it efficiently computes equilibria while outperforming existing game-specific algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Egon Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM Journal on Algebraic Discrete Methods, 6(3):466–486, 1985. ISSN 0196-5212, 2168-345X.
  2. Egon Balas. Disjunctive programming: properties of the convex hull of feasible points. Discrete Applied Mathematics, 89(1-3):3–44, 1998. ISSN 0166218X.
  3. Mixed-integer bilevel representability. Mathematical Programming, 2019. ISSN 1436-4646.
  4. Robert E. Bixby. Solving real-world linear programs: a decade and more of progress. Operations Research, 50(1):3–15, 2002. ISSN 0030-364X, 1526-5463.
  5. Nash equilibria in the two-player kidney exchange game. Mathematical Programming, 161(1-2):389–417, 2017. ISSN 0025-5610, 1436-4646.
  6. Existence of Nash equilibria on integer programming games. In A. Ismael F. Vaz, João Paulo Almeida, José Fernando Oliveira, and Alberto Adrego Pinto, editors, Operational Research, volume 223, pages 11–23. Springer International Publishing, Cham, 2018a. ISBN 978-3-319-71582-7 978-3-319-71583-4. series title: Springer Proceedings in Mathematics & Statistics.
  7. Competitive uncapacitated lot-sizing game. International Journal of Production Economics, 204:148–159, 2018b. ISSN 0925-5273.
  8. Computing equilibria for integer programming games. European Journal of Operational Research, 303(3):1057–1070, 2022. ISSN 0377-2217.
  9. When Nash meets Stackelberg. Management Science, (forthcoming), 2023a.
  10. Integer programming games: a gentle computational overview, chapter 2, pages 31–51. INFORMS, 2023b.
  11. Local cuts for mixed-integer programming. Mathematical Programming Computation, 5(2):171–200, 2013. ISSN 1867-2949, 1867-2957.
  12. Coin-OR. The COIN-OR cut generation library. https://github.com/coin-or/Cgl, 2023. Accessed: 2021-05-20.
  13. Extended formulations in combinatorial optimization. 4OR, 8(1):1–48, 2010. ISSN 1619-4500, 1614-2411.
  14. The linear complementarity problem. Number 60 in Classics in applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia, SIAM ed. edition, 2009. ISBN 978-0-89871-686-3.
  15. Location selection for hydrogen fuel stations under emerging provider competition. Transportation Research Part C: Emerging Technologies, 133:103426, 2021. ISSN 0968-090X.
  16. Equilibrium identification and selection in finite games. Operations Research, 2022. ISSN 0030-364X, 1526-5463.
  17. George B Dantzig. A proof of the equivalence of the programming problem and the game problem. In Tjalling Charles Koopmans, editor, Activity analysis of production and allocation, volume 13. Wiley and Sons, New York, NY, 1951. Cowles Foundation.
  18. Constantinos Daskalakis. Non-concave games: a challenge for game theory’s next 100 years. Nobel Symposium “One Hundred Years of Game Theory: Future Applications and Challenges”, 2022.
  19. The complexity of computing a Nash equilibrium. Communications of the ACM, 52(2):89–97, 2009. ISSN 0001-0782, 1557-7317.
  20. Approximating polyhedra with sparse inequalities. Mathematical Programming, 154(1-2):329–352, 2015. ISSN 0025-5610, 1436-4646.
  21. The PATH solver: a nommonotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software, 5(2):123–156, 1995. ISSN 1055-6788, 1029-4937.
  22. The zero regrets algorithm: optimizing over pure Nash equilibria via integer programming. INFORMS Journal on Computing, 35(5):1143–1160, 2023.
  23. ZERO: playing mathematical programming games. arXiv, abs/2111.07932, 2021.
  24. The critical node game. Journal of Combinatorial Optimization, (to appear), 2023.
  25. M Dresher and S Karlin. Solutions of convex games as fixed points. In Harold W. Kuhn and Albert W. Tucker, editors, Contributions to the Theory of Games, volume II, pages 75–86. Princeton University Press, 1953. ISBN 9780691079356.
  26. Polynomial games. In Harold W. Kuhn and Albert W. Tucker, editors, Contributions to the Theory of Games, volume I, pages 161–180. Princeton University Press, 1952. ISBN 9780691079349.
  27. Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer series in operations research. Springer, New York, 2003. ISBN 978-0-387-95580-3 978-0-387-95581-0.
  28. Interfaces to PATH 3.0: design, implementation and usage. Computational Optimization and Applications, 12(1/3):207–227, 1999. ISSN 09266003.
  29. On the separation of disjunctive cuts. Mathematical Programming, 128(1-2):205–230, 2011. ISSN 0025-5610, 1436-4646.
  30. Nonconvex multicommodity near equilibrium models: energy markets perspective. Operations Research Perspectives, 9:100243, 2022. ISSN 22147160.
  31. I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proceedings of the American Mathematical Society, 3(1):170, 1952. ISSN 00029939.
  32. Generalized Nash equilibrium problems with mixed-integer variables. arXiv preprint arXiv:2107.13298, 2021.
  33. Using EPECs to model bilevel games in restructured electricity markets with locational prices. Operations Research, 55(5):809–827, 2007. ISSN 0030-364X, 1526-5463.
  34. Why there is no need to use a big-M in linear bilevel optimization: a computational study of two ready-to-use approaches. Computational Management Science, 20(1):3, 2023. ISSN 1619-697X, 1619-6988.
  35. Rational generating functions and integer programming games. Operations Research, 59(6):1445–1460, 2011. ISSN 0030-364X, 1526-5463.
  36. Joint dynamic pricing and lot-sizing under competition. European Journal of Operational Research, 266(3):864–876, 2018. ISSN 0377-2217.
  37. C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. Journal of the Society for Industrial and Applied Mathematics, 12(2):413–423, 1964. ISSN 0368-4245, 2168-3484.
  38. John Nash. Non-cooperative games. Annals of mathematics, 54(2):286–295, 1951. ISSN 0003486X.
  39. John F. Nash. Equilibrium points in n𝑛nitalic_n-person games. Proceedings of the National Academy of Sciences of the United States of America, 36(1):48–49, 1950.
  40. Daniel Nowak. Nonconvex Nash games: solution concepts and algorithms. PhD Thesis, Technische Universität, Darmstadt, 2021.
  41. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.
  42. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science, 2(1):21–56, 2005. ISSN 1619-697X, 1619-6988.
  43. Nonconvex games with side constraints. SIAM Journal on Optimization, 21(4):1491–1522, 2011. ISSN 1052-6234, 1095-7189.
  44. Generating cuts from multiple-term disjunctions. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Karen Aardal, and Bert Gerards, editors, Integer Programming and Combinatorial Optimization, volume 2081, pages 348–360. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-540-42225-9 978-3-540-45535-6. series title: Lecture Notes in Computer Science.
  45. Simple search methods for finding a Nash equilibrium. Games and Economic Behavior, 63(2):642–662, 2008. ISSN 08998256.
  46. J. Rosenmüller. On a generalization of the Lemke–Howson algorithm to noncooperative n𝑛nitalic_n-person games. SIAM Journal on Applied Mathematics, 21(1):73–79, 1971. ISSN 0036-1399, 1095-712X.
  47. Alvin E. Roth. The economist as engineer: game theory, experimentation, and computation as tools for design economics. Econometrica, 70(4):1341–1378, 2002. ISSN 0012-9682, 1468-0262.
  48. Simone Sagratella. Computing all solutions of Nash equilibrium problems with discrete strategy sets. SIAM Journal on Optimization, 26(4):2190–2218, 2016. ISSN 1052-6234, 1095-7189.
  49. The noncooperative fixed charge transportation problem. European Journal of Operational Research, 284(1):373–382, 2020. ISSN 03772217.
  50. Mixed-integer programming methods for finding Nash equilibria. In Proceedings of the 20th National Conference on Artificial Intelligence - Volume 2, AAAI’05, pages 495–501. AAAI Press, 2005. ISBN 1-57735-236-X.
  51. A branch-and-prune algorithm for discrete Nash equilibrium problems. Computational Optimization and Applications, 86(2):491–519, 2023.
  52. Hanif D Sherali. A multiple leader Stackelberg model and analysis. Operations Research, 32(2):390–404, 1984.
  53. Separable and low-rank continuous games. International Journal of Game Theory, 37(4):475–504, 2008. ISSN 0020-7276, 1432-1270.
  54. J von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.
  55. Robert Wilson. Computing equilibria of n𝑛nitalic_n-person games. SIAM Journal on Applied Mathematics, 21(1):80–87, 1971. ISSN 0036-1399, 1095-712X.
  56. Gerhard J Woeginger. The trouble with the second quantifier. 4OR, 19(2):157–181, 2021.
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com