Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transmission Power Control for Over-the-Air Federated Averaging at Network Edge (2111.05719v2)

Published 10 Nov 2021 in cs.IT and math.IT

Abstract: Over-the-air computation (AirComp) has emerged as a new analog power-domain non-orthogonal multiple access (NOMA) technique for low-latency model/gradient-updates aggregation in federated edge learning (FEEL). By integrating communication and computation into a joint design, AirComp can significantly enhance the communication efficiency, but at the cost of aggregation errors caused by channel fading and noise. This paper studies a particular type of FEEL with federated averaging (FedAvg) and AirComp-based model-update aggregation, namely over-the-air FedAvg (Air-FedAvg). We investigate the transmission power control to combat against the AirComp aggregation errors for enhancing the training accuracy and accelerating the training speed of Air-FedAvg. Towards this end, we first analyze the convergence behavior (in terms of the optimality gap) of Air-FedAvg with aggregation errors at different outer iterations. Then, to enhance the training accuracy, we minimize the optimality gap by jointly optimizing the transmission power control at edge devices and the denoising factors at edge server, subject to a series of power constraints at individual edge devices. Furthermore, to accelerate the training speed, we also minimize the training latency of Air-FedAvg with a given targeted optimality gap, in which learning hyper-parameters including the numbers of outer iterations and local training epochs are jointly optimized with the power control. Finally, numerical results show that the proposed transmission power control policy achieves significantly faster convergence for Air-FedAvg, as compared with benchmark policies with fixed power transmission or per-iteration mean squared error (MSE) minimization. It is also shown that the Air-FedAvg achieves an order-of-magnitude shorter training latency than the conventional FedAvg with digital orthogonal multiple access (OMA-FedAvg).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiaowen Cao (17 papers)
  2. Guangxu Zhu (88 papers)
  3. Jie Xu (467 papers)
  4. Shuguang Cui (275 papers)
Citations (61)