Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking multiple spawning targets using Poisson multi-Bernoulli mixtures on sets of tree trajectories (2111.05620v2)

Published 10 Nov 2021 in stat.ME, cs.SY, eess.SY, and stat.AP

Abstract: This paper proposes a Poisson multi-Bernoulli mixture (PMBM) filter on the space of sets of tree trajectories for multiple target tracking with spawning targets. A tree trajectory contains all trajectory information of a target and its descendants, which appear due to the spawning process. Each tree contains a set of branches, where each branch has trajectory information of a target or one of the descendants and its genealogy. For the standard dynamic and measurement models with multi-Bernoulli spawning, the posterior is a PMBM density, with each Bernoulli having information on a potential tree trajectory. To enable a computationally efficient implementation, we derive an approximate PMBM filter in which each Bernoulli tree trajectory has multi-Bernoulli branches, obtained by minimising the Kullback-Leibler divergence. The resulting filter improves tracking performance of state-of-the-art algorithms in a simulated scenario.

Citations (10)

Summary

We haven't generated a summary for this paper yet.