Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering of longitudinal data: A tutorial on a variety of approaches (2111.05469v1)

Published 10 Nov 2021 in stat.ME, cs.LG, and stat.ML

Abstract: During the past two decades, methods for identifying groups with different trends in longitudinal data have become of increasing interest across many areas of research. To support researchers, we summarize the guidance from the literature regarding longitudinal clustering. Moreover, we present a selection of methods for longitudinal clustering, including group-based trajectory modeling (GBTM), growth mixture modeling (GMM), and longitudinal k-means (KML). The methods are introduced at a basic level, and strengths, limitations, and model extensions are listed. Following the recent developments in data collection, attention is given to the applicability of these methods to intensive longitudinal data (ILD). We demonstrate the application of the methods on a synthetic dataset using packages available in R.

Citations (2)

Summary

We haven't generated a summary for this paper yet.