Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Turing-Universal Learners with Optimal Scaling Laws (2111.05321v1)

Published 9 Nov 2021 in cs.LG, cs.AI, cs.CC, math.ST, stat.ML, and stat.TH

Abstract: For a given distribution, learning algorithm, and performance metric, the rate of convergence (or data-scaling law) is the asymptotic behavior of the algorithm's test performance as a function of number of train samples. Many learning methods in both theory and practice have power-law rates, i.e. performance scales as $n{-\alpha}$ for some $\alpha > 0$. Moreover, both theoreticians and practitioners are concerned with improving the rates of their learning algorithms under settings of interest. We observe the existence of a "universal learner", which achieves the best possible distribution-dependent asymptotic rate among all learning algorithms within a specified runtime (e.g. $O(n2)$), while incurring only polylogarithmic slowdown over this runtime. This algorithm is uniform, and does not depend on the distribution, and yet achieves best-possible rates for all distributions. The construction itself is a simple extension of Levin's universal search (Levin, 1973). And much like universal search, the universal learner is not at all practical, and is primarily of theoretical and philosophical interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.