An F-modulated stability framework for multistep methods (2111.05210v1)
Abstract: We introduce a new $\mathbf F$-modulated energy stability framework for general linear multistep methods. We showcase the theory for the two dimensional molecular beam epitaxy model with no slope selection which is a prototypical gradient flow with Lipschitz-bounded nonlinearity. We employ a class of representative BDF$k$, $2\le k \le 5$ discretization schemes with explicit $k{\mathrm{th}}$-order extrapolation of the nonlinear term. We prove the uniform-in-time boundedness of high Sobolev norms of the numerical solution. The upper bound is unconditional, i.e. regardless of the size of the time step. We develop a new algebraic theory and calibrate nearly optimal and \emph{explicit} maximal time step constraints which guarantee monotonic $\mathbf F$-modulated energy dissipation.