Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive solution of initial value problems by a dynamical Galerkin scheme (2111.04863v1)

Published 8 Nov 2021 in math.NA, cs.NA, physics.comp-ph, and physics.flu-dyn

Abstract: We study dynamical Galerkin schemes for evolutionary partial differential equations (PDEs), where the projection operator changes over time. When selecting a subset of basis functions, the projection operator is non-differentiable in time and an integral formulation has to be used. We analyze the projected equations with respect to existence and uniqueness of the solution and prove that non-smooth projection operators introduce dissipation, a result which is crucial for adaptive discretizations of PDEs, e.g., adaptive wavelet methods. For the Burgers equation we illustrate numerically that thresholding the wavelet coefficients, and thus changing the projection space, will indeed introduce dissipation of energy. We discuss consequences for the so-called `pseudo-adaptive' simulations, where time evolution and dealiasing are done in Fourier space, whilst thresholding is carried out in wavelet space. Numerical examples are given for the inviscid Burgers equation in 1D and the incompressible Euler equations in 2D and 3D.

Citations (4)

Summary

We haven't generated a summary for this paper yet.