Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution to the Non-Monotonicity and Crossing Problems in Quantile Regression (2111.04805v2)

Published 8 Nov 2021 in stat.ML and cs.LG

Abstract: This paper proposes a new method to address the long-standing problem of lack of monotonicity in estimation of the conditional and structural quantile function, also known as quantile crossing problem. Quantile regression is a very powerful tool in data science in general and econometrics in particular. Unfortunately, the crossing problem has been confounding researchers and practitioners alike for over 4 decades. Numerous attempts have been made to find a simple and general solution. This paper describes a unique and elegant solution to the problem based on a flexible check function that is easy to understand and implement in R and Python, while greatly reducing or even eliminating the crossing problem entirely. It will be very important in all areas where quantile regression is routinely used and may also find application in robust regression, especially in the context of machine learning. From this perspective, we also utilize the flexible check function to provide insights into the root causes of the crossing problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.