Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structure-preserving splitting methods for stochastic logarithmic Schrödinger equation via regularized energy approximation (2111.04402v2)

Published 8 Nov 2021 in math.NA and cs.NA

Abstract: In this paper, we study two kinds of structure-preserving splitting methods, including the Lie--Trotter type splitting method and the finite difference type method, for the stochasticlogarithmic Schr\"odinger equation (SlogS equation) via a regularized energy approximation. We first introduce a regularized SlogS equation with a small parameter $0<\epsilon\ll1$ which approximates the SlogS equation and avoids the singularity near zero density. Then we present a priori estimates, the regularized entropy and energy, and the stochastic symplectic structure of the proposed numerical methods. Furthermore, we derive both the strong convergence rates and the convergence rates of the regularized entropy and energy. To the best of our knowledge, this is the first result concerning the construction and analysis of numerical methods for stochastic Schr\"odinger equations with logarithmic nonlinearities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.