Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extension of Correspondence Analysis to multiway data-sets through High Order SVD: a geometric framework (2111.04343v1)

Published 8 Nov 2021 in math.NA, cs.NA, and stat.ME

Abstract: This paper presents an extension of Correspondence Analysis (CA) to tensors through High Order Singular Value Decomposition (HOSVD) from a geometric viewpoint. Correspondence analysis is a well-known tool, developed from principal component analysis, for studying contingency tables. Different algebraic extensions of CA to multi-way tables have been proposed over the years, nevertheless neglecting its geometric meaning. Relying on the Tucker model and the HOSVD, we propose a direct way to associate with each tensor mode a point cloud. We prove that the point clouds are related to each other. Specifically using the CA metrics we show that the barycentric relation is still true in the tensor framework. Finally two data sets are used to underline the advantages and the drawbacks of our strategy with respect to the classical matrix approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.