Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence Reconstruction Problem for Deletion Channels: A Complete Asymptotic Solution (2111.04255v1)

Published 8 Nov 2021 in cs.IT, math.CO, and math.IT

Abstract: Transmit a codeword $x$, that belongs to an $(\ell-1)$-deletion-correcting code of length $n$, over a $t$-deletion channel for some $1\le \ell\le t<n$. Levenshtein, in 2001, proposed the problem of determining $N(n,\ell,t)+1$, the minimum number of distinct channel outputs required to uniquely reconstruct $x$. Prior to this work, $N(n,\ell,t)$ is known only when $\ell\in{1,2}$. Here, we provide an asymptotically exact solution for all values of $\ell$ and $t$. Specifically, we show that $N(n,\ell,t)=\binom{2\ell}{\ell}/(t-\ell)! n{t-\ell} - O(n{t-\ell-1})$ and in the special instance where $\ell=t$, we show that $N(n,\ell,\ell)=\binom{2\ell}{\ell}$. We also provide a conjecture on the exact value of $N(n,\ell,t)$ for all values of $n$, $\ell$, and $t$.

Citations (17)

Summary

We haven't generated a summary for this paper yet.