Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surjectivity of the adelic Galois Representation associated to a Drinfeld Module of prime rank (2111.04234v1)

Published 8 Nov 2021 in math.NT

Abstract: In this paper, let $\phi$ be the Drinfeld module over $\mathbb{F}{q}(T)$ of prime rank $r$ defined by $$\phi_T=T+\tau{r-1}+T{q-1}\taur.$$ We prove that under certain condition on $\mathbb{F}_q$, the adelic Galois representation $${\rho}{\phi}:{\rm{Gal}}(\mathbb{F}q(T){{\rm{sep}}}/\mathbb{F}_q(T))\longrightarrow \varprojlim{\mathfrak{a}}{\rm{Aut}}(\phi[\mathfrak{a}])\cong {\rm{GL_r}}(\widehat{A})$$ is surjective.

Summary

We haven't generated a summary for this paper yet.