2000 character limit reached
Surjectivity of the adelic Galois Representation associated to a Drinfeld Module of prime rank (2111.04234v1)
Published 8 Nov 2021 in math.NT
Abstract: In this paper, let $\phi$ be the Drinfeld module over $\mathbb{F}{q}(T)$ of prime rank $r$ defined by $$\phi_T=T+\tau{r-1}+T{q-1}\taur.$$ We prove that under certain condition on $\mathbb{F}_q$, the adelic Galois representation $${\rho}{\phi}:{\rm{Gal}}(\mathbb{F}q(T){{\rm{sep}}}/\mathbb{F}_q(T))\longrightarrow \varprojlim{\mathfrak{a}}{\rm{Aut}}(\phi[\mathfrak{a}])\cong {\rm{GL_r}}(\widehat{A})$$ is surjective.