Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stable Lifelong Learning: Spiking neurons as a solution to instability in plastic neural networks (2111.04113v1)

Published 7 Nov 2021 in cs.NE

Abstract: Synaptic plasticity poses itself as a powerful method of self-regulated unsupervised learning in neural networks. A recent resurgence of interest has developed in utilizing Artificial Neural Networks (ANNs) together with synaptic plasticity for intra-lifetime learning. Plasticity has been shown to improve the learning capabilities of these networks in generalizing to novel environmental circumstances. However, the long-term stability of these trained networks has yet to be examined. This work demonstrates that utilizing plasticity together with ANNs leads to instability beyond the pre-specified lifespan used during training. This instability can lead to the dramatic decline of reward seeking behavior, or quickly lead to reaching environment terminal states. This behavior is shown to hold consistent for several plasticity rules on two different environments across many training time-horizons: a cart-pole balancing problem and a quadrupedal locomotion problem. We present a solution to this instability through the use of spiking neurons.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Samuel Schmidgall (27 papers)
  2. Joe Hays (6 papers)
Citations (4)