Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Fake Evolutionary Generative Adversarial Networks for Imbalance Hyperspectral Image Classification (2111.04019v2)

Published 7 Nov 2021 in eess.IV and cs.CV

Abstract: This paper presents a novel multi-fake evolutionary generative adversarial network(MFEGAN) for handling imbalance hyperspectral image classification. It is an end-to-end approach in which different generative objective losses are considered in the generator network to improve the classification performance of the discriminator network. Thus, the same discriminator network has been used as a standard classifier by embedding the classifier network on top of the discriminating function. The effectiveness of the proposed method has been validated through two hyperspectral spatial-spectral data sets. The same generative and discriminator architectures have been utilized with two different GAN objectives for a fair performance comparison with the proposed method. It is observed from the experimental validations that the proposed method outperforms the state-of-the-art methods with better classification performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tanmoy Dam (18 papers)
  2. Nidhi Swami (1 paper)
  3. Sreenatha G. Anavatti (20 papers)
  4. Hussein A. Abbass (18 papers)
Citations (12)