Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Mediation and Sensitivity Analysis for Mixed-Scale Data (2111.03907v1)

Published 6 Nov 2021 in stat.ME and stat.AP

Abstract: The goal of causal mediation analysis, often described within the potential outcomes framework, is to decompose the effect of an exposure on an outcome of interest along different causal pathways. Using the assumption of sequential ignorability to attain non-parametric identification, Imai et al. (2010) proposed a flexible approach to measuring mediation effects, focusing on parametric and semiparametric normal/Bernoulli models for the outcome and mediator. Less attention has been paid to the case where the outcome and/or mediator model are mixed-scale, ordinal, or otherwise fall outside the normal/Bernoulli setting. We develop a simple, but flexible, parametric modeling framework to accommodate the common situation where the responses are mixed continuous and binary, and apply it to a zero-one inflated beta model for the outcome and mediator. Applying our proposed methods to a publicly-available JOBS II dataset, we (i) argue for the need for non-normal models, (ii) show how to estimate both average and quantile mediation effects for boundary-censored data, and (iii) show how to conduct a meaningful sensitivity analysis by introducing unidentified, scientifically meaningful, sensitivity parameters.

Summary

We haven't generated a summary for this paper yet.