Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Insights Into Incitement: A Computational Perspective on Dangerous Speech on Twitter in India (2111.03906v1)

Published 6 Nov 2021 in cs.SI

Abstract: Dangerous speech on social media platforms can be framed as blatantly inflammatory, or be couched in innuendo. It is also centrally tied to who engages it - it can be driven by openly sectarian social media accounts, or through subtle nudges by influential accounts, allowing for complex means of reinforcing vilification of marginalized groups, an increasingly significant problem in the media environment in the Global South. We identify dangerous speech by influential accounts on Twitter in India around three key events, examining both the language and networks of messaging that condones or actively promotes violence against vulnerable groups. We characterize dangerous speech users by assigning Danger Amplification Belief scores and show that dangerous users are more active on Twitter as compared to other users as well as most influential in the network, in terms of a larger following as well as volume of verified accounts. We find that dangerous users have a more polarized viewership, suggesting that their audience is more susceptible to incitement. Using a mix of network centrality measures and qualitative analysis, we find that most dangerous accounts tend to either be in mass media related occupations or allied with low-ranking, right-leaning politicians, and act as "broadcasters" in the network, where they are best positioned to spearhead the rapid dissemination of dangerous speech across the platform.

Citations (9)

Summary

We haven't generated a summary for this paper yet.