Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regular Decision Processes for Grid Worlds (2111.03647v2)

Published 5 Nov 2021 in cs.AI

Abstract: Markov decision processes are typically used for sequential decision making under uncertainty. For many aspects however, ranging from constrained or safe specifications to various kinds of temporal (non-Markovian) dependencies in task and reward structures, extensions are needed. To that end, in recent years interest has grown into combinations of reinforcement learning and temporal logic, that is, combinations of flexible behavior learning methods with robust verification and guarantees. In this paper we describe an experimental investigation of the recently introduced regular decision processes that support both non-Markovian reward functions as well as transition functions. In particular, we provide a tool chain for regular decision processes, algorithmic extensions relating to online, incremental learning, an empirical evaluation of model-free and model-based solution algorithms, and applications in regular, but non-Markovian, grid worlds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nicky Lenaers (1 paper)
  2. Martijn van Otterlo (4 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.