Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AIM: Automatic Interaction Machine for Click-Through Rate Prediction (2111.03318v2)

Published 5 Nov 2021 in cs.IR

Abstract: Feature embedding learning and feature interaction modeling are two crucial components of deep models for Click-Through Rate (CTR) prediction. Most existing deep CTR models suffer from the following three problems. First, feature interactions are either manually designed or simply enumerated. Second, all the feature interactions are modeled with an identical interaction function. Third, in most existing models, different features share the same embedding size which leads to memory inefficiency. To address these three issues mentioned above, we propose Automatic Interaction Machine (AIM) with three core components, namely, Feature Interaction Search (FIS), Interaction Function Search (IFS) and Embedding Dimension Search (EDS), to select significant feature interactions, appropriate interaction functions and necessary embedding dimensions automatically in a unified framework. Specifically, FIS component automatically identifies different orders of essential feature interactions with useless ones pruned; IFS component selects appropriate interaction functions for each individual feature interaction in a learnable way; EDS component automatically searches proper embedding size for each feature. Offline experiments on three large-scale datasets validate the superior performance of AIM. A three-week online A/B test in the recommendation service of a mainstream app market shows that AIM improves DeepFM model by 4.4% in terms of CTR.

Citations (17)

Summary

We haven't generated a summary for this paper yet.