Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective (2111.03308v3)

Published 5 Nov 2021 in cs.CR and cs.LG

Abstract: As ML technologies and applications are rapidly changing many computing domains, security issues associated with ML are also emerging. In the domain of systems security, many endeavors have been made to ensure ML model and data confidentiality. ML computations are often inevitably performed in untrusted environments and entail complex multi-party security requirements. Hence, researchers have leveraged the Trusted Execution Environments (TEEs) to build confidential ML computation systems. We conduct a systematic and comprehensive survey by classifying attack vectors and mitigation in confidential ML computation in untrusted environments, analyzing the complex security requirements in multi-party scenarios, and summarizing engineering challenges in confidential ML implementation. Lastly, we suggest future research directions based on our study.

Citations (9)

Summary

We haven't generated a summary for this paper yet.