Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on using the mass matrix as a preconditioner for the Poisson equation (2111.03191v1)

Published 4 Nov 2021 in math.NA and cs.NA

Abstract: We show that the mass matrix derived from finite elements can be effectively used as a preconditioner for iteratively solving the linear system arising from finite-difference discretization of the Poisson equation, using the conjugate gradient method. We derive analytically the condition number of the preconditioned operator. Theoretical analysis shows that the ratio of the condition number of the Laplacian to the preconditioned operator is $8/3$ in one dimension, $9/2$ in two dimensions, and $29/34 \approx 6.3$ in three dimensions. From this it follows that the expected iteration count for achieving a fixed reduction of the norm of the residual is smaller than a half of the number of the iterations of unpreconditioned CG in 2D and 3D. The scheme is easy to implement, and numerical experiments show its efficiency.

Summary

We haven't generated a summary for this paper yet.