Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Comparison of the Quadratic Sieve Factoring Algorithm and the Pollard Rho Factoring Algorithm (2111.02967v1)

Published 4 Nov 2021 in cs.CR and cs.CC

Abstract: One of the most significant challenges on cryptography today is the problem of factoring large integers since there are no algorithms that can factor in polynomial time, and factoring large numbers more than some limits(200 digits) remain difficult. The security of the current cryptosystems depends on the hardness of factoring large public keys. In this work, we want to implement two existing factoring algorithms - pollard-rho and quadratic sieve - and compare their performance. In addition, we want to analyze how close is the theoretical time complexity of both algorithms compared to their actual time complexity and how bit length of numbers can affect quadratic sieve's performance. Finally, we verify whether the quadratic sieve would do better than pollard-rho for factoring numbers smaller than 80 bits.

Summary

We haven't generated a summary for this paper yet.