Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facial Emotion Recognition using Deep Residual Networks in Real-World Environments (2111.02717v1)

Published 4 Nov 2021 in cs.CV and cs.MM

Abstract: Automatic affect recognition using visual cues is an important task towards a complete interaction between humans and machines. Applications can be found in tutoring systems and human computer interaction. A critical step towards that direction is facial feature extraction. In this paper, we propose a facial feature extractor model trained on an in-the-wild and massively collected video dataset provided by the RealEyes company. The dataset consists of a million labelled frames and 2,616 thousand subjects. As temporal information is important to the emotion recognition domain, we utilise LSTM cells to capture the temporal dynamics in the data. To show the favourable properties of our pre-trained model on modelling facial affect, we use the RECOLA database, and compare with the current state-of-the-art approach. Our model provides the best results in terms of concordance correlation coefficient.

Summary

We haven't generated a summary for this paper yet.