Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Newton Methods for Saddle Point Problems and Beyond (2111.02708v5)

Published 4 Nov 2021 in math.OC and cs.LG

Abstract: This paper studies quasi-Newton methods for solving strongly-convex-strongly-concave saddle point problems (SPP). We propose greedy and random Broyden family updates for SPP, which have explicit local superlinear convergence rate of ${\mathcal O}\big(\big(1-\frac{1}{n\kappa2}\big){k(k-1)/2}\big)$, where $n$ is dimensions of the problem, $\kappa$ is the condition number and $k$ is the number of iterations. The design and analysis of proposed algorithm are based on estimating the square of indefinite Hessian matrix, which is different from classical quasi-Newton methods in convex optimization. We also present two specific Broyden family algorithms with BFGS-type and SR1-type updates, which enjoy the faster local convergence rate of $\mathcal O\big(\big(1-\frac{1}{n}\big){k(k-1)/2}\big)$. Additionally, we extend our algorithms to solve general nonlinear equations and prove it enjoys the similar convergence rate.

Citations (13)

Summary

We haven't generated a summary for this paper yet.