Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Video Salient Object Detection via Contrastive Features and Attention Modules (2111.02368v1)

Published 3 Nov 2021 in cs.CV

Abstract: Video salient object detection aims to find the most visually distinctive objects in a video. To explore the temporal dependencies, existing methods usually resort to recurrent neural networks or optical flow. However, these approaches require high computational cost, and tend to accumulate inaccuracies over time. In this paper, we propose a network with attention modules to learn contrastive features for video salient object detection without the high computational temporal modeling techniques. We develop a non-local self-attention scheme to capture the global information in the video frame. A co-attention formulation is utilized to combine the low-level and high-level features. We further apply the contrastive learning to improve the feature representations, where foreground region pairs from the same video are pulled together, and foreground-background region pairs are pushed away in the latent space. The intra-frame contrastive loss helps separate the foreground and background features, and the inter-frame contrastive loss improves the temporal consistency. We conduct extensive experiments on several benchmark datasets for video salient object detection and unsupervised video object segmentation, and show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.

Citations (16)

Summary

We haven't generated a summary for this paper yet.