Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Least Squares Alignment for Unsupervised Domain Adaptation (2111.02207v1)

Published 3 Nov 2021 in cs.LG

Abstract: Unsupervised domain adaptation leverages rich information from a labeled source domain to model an unlabeled target domain. Existing methods attempt to align the cross-domain distributions. However, the statistical representations of the alignment of the two domains are not well addressed. In this paper, we propose deep least squares alignment (DLSA) to estimate the distribution of the two domains in a latent space by parameterizing a linear model. We further develop marginal and conditional adaptation loss to reduce the domain discrepancy by minimizing the angle between fitting lines and intercept differences and further learning domain invariant features. Extensive experiments demonstrate that the proposed DLSA model is effective in aligning domain distributions and outperforms state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Youshan Zhang (37 papers)
  2. Brian D. Davison (26 papers)
Citations (3)