Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EASE: Energy-Aware Job Scheduling for Vehicular Edge Networks With Renewable Energy Resources (2111.02186v2)

Published 3 Nov 2021 in cs.NI, cs.SY, eess.SY, and math.OC

Abstract: The energy sustainability of multi-access edge computing (MEC) platforms is here addressed by developing Energy-Aware job Scheduling at the Edge (EASE), a computing resource scheduler for edge servers co-powered by renewable energy resources and the power grid. The scenario under study involves the optimal allocation and migration of time-sensitive computing tasks in a resource-constrained internet of vehicles (IoV) context. This is achieved by tackling, as the main objective, the minimization of the carbon footprint of the edge network, whilst delivering adequate quality of service (QoS) to the end users (e.g., meeting task execution deadlines). EASE integrates i) a centralized optimization step, solved through model predictive control (MPC), to manage the renewable energy that is locally collected at the edge servers and their local computing resources, estimating their future availability, and ii) a distributed consensus step, solved via dual ascent in closed form, to reach agreement on service migrations. EASE is compared with four existing migration strategies. Quantitative results demonstrate its greater energy efficiency, which often gets close to complete carbon neutrality, while also improving the QoS.

Citations (8)

Summary

We haven't generated a summary for this paper yet.