Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expected Complexity of Persistent Homology Computation via Matrix Reduction (2111.02125v3)

Published 3 Nov 2021 in math.AT and cs.CC

Abstract: We study the algorithmic complexity of computing persistent homology of a randomly generated filtration. Specifically, we prove upper bounds for the average fill-in (number of non-zero entries) of the boundary matrix on \v{C}ech, Vietoris--Rips and Erd\H{o}s--R\'enyi filtrations after matrix reduction. Our bounds show that the reduced matrix is expected to be significantly sparser than what the general worst-case predicts. Our method is based on previous results on the expected Betti numbers of the corresponding complexes. We establish a link between these results and the fill-in of the boundary matrix. In the $1$-dimensional case, our bound for \v{C}ech and Vietoris--Rips complexes is asymptotically tight up to a logarithmic factor. We also provide an Erd\H{o}s--R\'enyi filtration realising the worst-case.

Citations (4)

Summary

We haven't generated a summary for this paper yet.