Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

W[1]-hardness of Outer Connected Dominating set in d-degenerate Graphs (2111.02025v1)

Published 3 Nov 2021 in cs.CC

Abstract: A set $D \subseteq V$ of a graph $G = (V,E)$ is called an outer-connected dominating set of $G$ if every vertex $v$ not in $D$ is adjacent to at least one vertex in $D$, and the induced subgraph of $G$ on $V \setminus D$ is connected. The Minimum Outer-connected Domination problem is to find an outer-connected dominating set of minimum cardinality for the input graph $G$. Given a positive integer $k$ and a graph $G = (V, E)$, the Outer-connected Domination Decision problem is to decide whether $G$ has an outer-connected dominating set of cardinality at most $k$. The Outer-connected Domination Decision problem is known to be NP-complete, even for bipartite graphs. We study the problem of outer-connected domination on sparse graphs from the perspective of parameterized complexity and show that it is W[1]-hard on d-degenerate graphs, while the original connected dominating set has FTP algorithm on d-degenerate graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.