Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data (2111.02019v2)

Published 3 Nov 2021 in stat.CO and cs.LG

Abstract: Gaussian process (GP) models that combine both categorical and continuous input variables have found use in longitudinal data analysis of and computer experiments. However, standard inference for these models has the typical cubic scaling, and common scalable approximation schemes for GPs cannot be applied since the covariance function is non-continuous. In this work, we derive a basis function approximation scheme for mixed-domain covariance functions, which scales linearly with respect to the number of observations and total number of basis functions. The proposed approach is naturally applicable to also Bayesian GP regression with discrete observation models. We demonstrate the scalability of the approach and compare model reduction techniques for additive GP models in a longitudinal data context. We confirm that we can approximate the exact GP model accurately in a fraction of the runtime compared to fitting the corresponding exact model. In addition, we demonstrate a scalable model reduction workflow for obtaining smaller and more interpretable models when dealing with a large number of candidate predictors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Juho Timonen (3 papers)
  2. Harri Lähdesmäki (26 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets