Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Keyphrase Completion (2111.01910v1)

Published 29 Oct 2021 in cs.IR and cs.CL

Abstract: Keyphrase provides accurate information of document content that is highly compact, concise, full of meanings, and widely used for discourse comprehension, organization, and text retrieval. Though previous studies have made substantial efforts for automated keyphrase extraction and generation, surprisingly, few studies have been made for \textit{keyphrase completion} (KPC). KPC aims to generate more keyphrases for document (e.g. scientific publication) taking advantage of document content along with a very limited number of known keyphrases, which can be applied to improve text indexing system, etc. In this paper, we propose a novel KPC method with an encoder-decoder framework. We name it \textit{deep keyphrase completion} (DKPC) since it attempts to capture the deep semantic meaning of the document content together with known keyphrases via a deep learning framework. Specifically, the encoder and the decoder in DKPC play different roles to make full use of the known keyphrases. The former considers the keyphrase-guiding factors, which aggregates information of known keyphrases into context. On the contrary, the latter considers the keyphrase-inhibited factor to inhibit semantically repeated keyphrase generation. Extensive experiments on benchmark datasets demonstrate the efficacy of our proposed model.

Citations (2)

Summary

We haven't generated a summary for this paper yet.