Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic simulation of residential building occupant-driven energy use in a bottom-up model of the U.S. housing stock (2111.01881v2)

Published 2 Nov 2021 in eess.SY, cs.SY, and physics.data-an

Abstract: The residential buildings sector is one of the largest electricity consumers worldwide and contributes disproportionally to peak electricity demand in many regions. Strongly driven by occupant activities at home, household energy consumption is stochastic and heterogeneous in nature. However, most residential building energy models applied by industry use homogeneous, deterministic occupant activity schedules, which work well for predictions of annual energy consumption, but can result in unrealistic hourly or sub-hourly electric load profiles, with exaggerated or muted peaks. This mattered less in the past, but the increasing proportion of variable renewable energy generators in power systems means that representing the heterogeneity and stochasticity of occupant behavior is crucial for reliable energy planning. This is particularly true for systems that include distributed energy resources, such as grid-interactive efficient buildings, solar photovoltaics, and battery storage. This work presents a stochastic occupant behavior simulator that models the energy use behavior of individual household members. It also presents an integration with a building stock model to simulate residential building loads more accurately at community, city, state, and national scales. More specifically, we first employ clustering techniques to identify distinct patterns of occupant behavior. Then, we combine time-inhomogeneous Markov chain simulations with probabilistic sampling of event durations to realistically simulate occupant behaviors. This stochastic simulator is integrated with ResStock, a large-scale residential building stock simulation tool, to demonstrate the capability of stochastic residential building load modeling at scale. The simulation results were validated against both American Time Use Survey data and measured end-use electricity data for accuracy and reliability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.