Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pareto Monte Carlo Tree Search for Multi-Objective Informative Planning (2111.01825v1)

Published 2 Nov 2021 in cs.RO

Abstract: In many environmental monitoring scenarios, the sampling robot needs to simultaneously explore the environment and exploit features of interest with limited time. We present an anytime multi-objective informative planning method called Pareto Monte Carlo tree search which allows the robot to handle potentially competing objectives such as exploration versus exploitation. The method produces optimized decision solutions for the robot based on its knowledge (estimation) of the environment state, leading to better adaptation to environmental dynamics. We provide algorithmic analysis on the critical tree node selection step and show that the number of times choosing sub-optimal nodes is logarithmically bounded and the search result converges to the optimal choices at a polynomial rate.

Citations (39)

Summary

We haven't generated a summary for this paper yet.