Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Normalized solution to the Schödinger equation with potential and general nonlinear term: Mass super-critical case (2111.01687v1)

Published 2 Nov 2021 in math.AP

Abstract: In present paper, we prove the existence of solutions $(\lambda, u)\in \R\times H1(\RN)$ to the following Schr\"odinger equation $$ \begin{cases} -\Delta u(x)+V(x)u(x)+\lambda u(x)=g(u(x))\quad &\hbox{in}~\RN\ 0\leq u(x)\in H1(\RN), N\geq 3 \end{cases} $$ satisfying the normalization constraint $\displaystyle \int_{\RN}u2 dx=a$. We treat the so-called mass super-critical case here. Under an explicit smallness assumption on $V$ and some Ambrosetti-Rabinowitz type conditions on $g$, we can prove the existence of ground state normalized solutions for prescribed mass $a>0$. Furthermore, we emphasize that the mountain pass characterization of a minimizing solution of the problem $$\inf\left{\int \left[\frac{1}{2}|\nabla u|2+\frac{1}{2}V(x)u2-G(u)\right]dx : |u|_{L2(\RN)}{2}=a, P[u]=0\right},$$ where $G(s)=\int_0s g(\tau)d\tau$ and $$P[u]=\int\left[|\nabla u|2-\frac{1}{2}\langle \nabla V(x), x\rangle u2 -N\left(\frac{1}{2}g(u)u-G(u)\right)\right]dx.$$

Summary

We haven't generated a summary for this paper yet.